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The current manuscript sets out a position stand for blood flow restriction (BFR) exercise,
focusing on the methodology, application and safety of this mode of training. With the
emergence of this technique and the wide variety of applications within the literature,
the aim of this position stand is to set out a current research informed guide to BFR
training to practitioners. This covers the use of BFR to enhance muscular strength and
hypertrophy via training with resistance and aerobic exercise and preventing muscle
atrophy using the technique passively. The authorship team for this article was selected
from the researchers focused in BFR training research with expertise in exercise science,
strength and conditioning and sports medicine.

Keywords: blood flow restriction exercise, kaatsu training, occlusion training, BFR exercise, resistance training

INTRODUCTION

Blood flow restriction (BFR) is a training method partially restricting arterial inflow and fully
restricting venous outflow in working musculature during exercise (Scott et al., 2015). Performing
exercise with reduced blood flow achieved by restriction of the vasculature proximal to the muscle
dates back to Dr. Yoshiaki Sato in Japan, where it was known as “kaatsu training,” meaning “training
with added pressure.” Kaatsu training is now performed all over the world and is more commonly
referred to as “BFR training” and achieved using a pneumatic tourniquet system (Wernbom et al.,
2008; Loenneke et al., 2012d).
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The technique of BFR in the muscle using a pneumatic
tourniquet system involves applying an external pressure,
typically using a tourniquet cuff, to the most proximal region
of the upper and/or lower limbs. When the cuff is inflated,
there is gradual mechanical compression of the vasculature
underneath the cuff, resulting in partial restriction of arterial
blood flow to structures distal to the cuff, but which more
severely affects venous outflow from under the cuff that
is proposed to also impede venous return. Compression of
the vasculature proximal to the skeletal muscle results in
inadequate oxygen supply (hypoxia) within the muscle tissue
(Manini and Clark, 2009; Larkin et al., 2012). Furthermore,
the diminution of venous blood flow results in blood pooling
within the capillaries of the occluded limbs, often reflected
by visible erythema. The level of blood pooling may be
influenced by the amount of pressure applied. In addition
to this, when muscular contractions are performed under
conditions of BFR, there is an increase in intramuscular
pressure beneath the cuff (Kacin et al., 2015), which further
disturbs blood flow.

Whilst the number of research groups and studies
investigating BFR have grown, so too has the number of
practitioners using this mode of training (Patterson and
Brandner, 2017). This is positive, however, evidence from
Patterson and Brandner (2017) suggests that practitioners are
unclear on how to use and apply BFR in line with current
research informed standards. For example, there was a wide
range of pressures applied by practitioners that resulted in
unintended consequences such as a large incidence of numbness
following BFR. Therefore, the aim of this position statement
is to provide a current, research informed guide to BFR from
a group of world leading experts in the field. It is envisaged
that this will facilitate practitioners to be more informed and
clearer in deciding the reasons why they should apply BFR,
how they should apply BFR as well as understanding the safety
issues associated with this BFR training. For a more detailed
understanding of the mechanisms of BFR exercise we refer
readers to the following review articles (Wernbom et al., 2008;
Pearson and Hussain, 2015).

APPLICATION OF BFR

BFR is applied during both voluntary resistance exercise
(BFR-RE) and aerobic exercise (BFR-AE), and also passively
without exercise (P-BFR). More recent research has examined
the combination of BFR with non-traditional exercise modalities,
such as whole-body vibration techniques and neuromuscular
electrical stimulation.

Protocols for Enhanced Muscle Strength
and Hypertrophy
In the following section, an overview of the BFR literature
aiming at increasing maximal skeletal muscle strength and
muscle mass will be provided. Tables 1, 2 provide an overview
of the recommendations for the application of BFR-RE and
BFR-AE, respectively.

BFR-RE
Increases in muscle hypertrophy and strength with BFR-RE are
extensively documented. In recent years, a number of systematic
reviews and meta-analyses have demonstrated BFR-RE to
effectively increase skeletal muscle strength and/or hypertrophy
in healthy young (Loenneke et al., 2012d; Slysz et al., 2016;
Lixandrão et al., 2018) and older (Centner et al., 2018a;
Lixandrão et al., 2018) populations, as well as load compromised
populations in need of rehabilitation (Hughes et al., 2017).
Various measures of muscle strength have been shown to
improve in response to BFR-RE interventions, including dynamic
isotonic (Burgomaster et al., 2003; Moore et al., 2004), isometric
(Takarada et al., 2000a; Moore et al., 2004) and isokinetic strength
(Takarada et al., 2000c, 2004 Burgomaster et al., 2003; Moore
et al., 2004), as well as rate of force development/explosive
strength capacity (Nielsen et al., 2017b). It is well documented
that muscle hypertrophy and strength adaptations with BFR-RE
are significantly greater than those achieved with low-load
resistance exercise (LL-RE) alone in most (Takarada et al.,
2002, 2004; Abe et al., 2005a,b,c; Yasuda et al., 2005) but not
all studies (Farup et al., 2015). Such adaptations have been
observed after only 1–3 weeks (Abe et al., 2005a,b, 2006;
Fujita et al., 2008; Nielsen et al., 2012; Yasuda et al., 2005).
These timescales for early increases in strength are mirrored
in high-load resistance exercise (HL-RE) research (Blazevich
et al., 2017), however, this is not typically the case for muscle
mass where adaptations are not usually observed in 1–3 weeks
following HL-RE (Damas et al., 2016).

Although increases in muscle size may be partly a result of
the acute edema observed during and after BFR-RE (Loenneke
et al., 2012c; Pearson and Hussain, 2015), improvements are
still observed between 2 and 10 days post-training (Abe et al.,
2005a; Fujita et al., 2008; Nielsen et al., 2012). Thus, it appears
that BFR-RE allows for early addition of skeletal muscle mass; it
should be noted though that this early muscle growth is likely
due to the ability to use BFR-RE with a high training frequency,

TABLE 1 | Model of exercise prescription with BFR-RE.

Guidelines

Frequency 2–3 times a week (>3 weeks) or 1–2 times per day
(1–3 weeks)

Load 20–40% 1RM

Restriction time 5–10 min per exercise (reperfusion between
exercises)

Type Small and large muscle groups (arms and legs/uni
or bilateral)

Sets 2–4

Cuff 5 (small), 10 or 12 (medium), 17 or 18 cm (large)

Repetitions Pressure (75 reps) – 30 × 15 × 15 × 15, or sets to failure
40–80% AOP

Rest between sets 30–60 s

Restriction form Continuous or intermittent

Execution speed 1–2 s (concentric and eccentric)

Execution Until concentric failure or when planned rep
scheme is completed
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which is not always possible with HL-RE. For example, the lower
loads used during BFR-RE to not take as long to recover from as
HL-RE and thus due to these lower mechanical demands this may
allow for a higher training frequency. Muscle hypertrophy with
conventional training frequency (2–3 times per week) has been
observed following longer training durations of 3 weeks (Ladlow
et al., 2018), 5 weeks (Manimmanakorn et al., 2013), 6 weeks
(Thiebaud et al., 2013), and ≥8 weeks of training (Moore et al.,
2004; Libardi et al., 2015; Yasuda et al., 2016; Cook et al., 2017).
BFR-RE improves muscle strength in comparison to LL-RE alone
(Hughes et al., 2017) but generally show less gain in muscle
strength compared to HL-RE (Loenneke et al., 2012d; Hughes
et al., 2017; Lixandrão et al., 2018). Recent meta-analysis of
Lixandrão et al. (2018) showed superior muscle strength gains
for HL-RE as compared with BFR-RE, even when adjusting for
potential moderators [e.g., test specificity (dynamic or isometric),
cuff width, absolute occlusion pressure and occlusion pressure
prescription method]. On the other hand, the same meta-analysis
showed that BFR-RE induces comparable increases in muscle
mass when compared to HL-RE, regardless of cuff width,
absolute occlusion pressure and occlusion pressure prescription
method. Thus, we suggest that although the muscle strength
gains observed in BFR-RE are lower compared to HL-RE, the
BFR is more effective than LL-RE alone and can be used
when HL-RE is not advisable (e.g., post-operative rehabilitation,
cardiac rehabilitation, inflammatory diseases, and frail elderly).
When considering muscle mass growth, both BFR-RE and HL-RE
seem equally effective. Disuse atrophy is a frequent complication
in clinical populations making BFR-RE a potential alternative to
HL-RE specifically for muscle mass loss.

Determining Cuff Pressure
The amount of pressure required to cease blood flow to a limb
[i.e., arterial occlusion pressure (AOP)] is related to a range
of individual limb characteristics; tourniquet shape, width and
length, the size of the limb or an individual’s blood pressure
(Loenneke et al., 2012b, 2015; Jessee et al., 2016; McEwen
et al., 2018). A bigger limb will require a greater cuff pressure
to fully restrict arterial blood flow, and this is true across a
range of cuff widths (Loenneke et al., 2012b). Some researchers
have suggested that the pressure could be set relative to the
individual, cuff width, and cuff material by setting the pressure
relative to the arterial occlusion pressure of the cuff that will
be utilized during exercise (% AOP; Patterson et al., 2017;
McEwen et al., 2018). This can be done by inflating the cuff
being used during exercise up to the point where blood flow
ceases (100% AOP) and using a percentage of that pressure
(e.g., 40–80% of AOP) during exercise. Although some have
applied pressures relative to brachial systolic blood pressure
(SbP) (traditional blood pressure; Brandner et al., 2015), this
may not provide a consistent reduction in blood flow unless the
cuff used for traditional blood pressure is the same cuff used
during exercise (Loenneke et al., 2012b). How well traditional
blood pressure in the arm applies to a leg (larger limb) is
also something to consider with this method (Loenneke et al.,
2016). Additionally, SbP has been found to correlate poorly with
measurements of arterial occlusion pressure (Younger et al.,

2004). Despite some researchers recommending the pressure
be made relative to the exercised limb, the majority of early
studies applied the same absolute pressure to each individual,
independent of cuff width and limb size. These pressures have
ranged from absolute pressures as low as 50 mmHg (Kubota et al.,
2011) to as high as 300 mmHg (Cook et al., 2007). Although
the majority of studies have produced beneficial muscular
adaptations with the same absolute pressures applied to each
individual, it appears that greater BFR pressure can augment the
cardiovascular response and often induces discomfort associated
with this type of exercise (Jessee et al., 2017; Mattocks et al., 2017).
It is therefore recommended to set pressure during BFR exercise
based on measurement of AOP, with pressures ranging from 40
to 80% of AOP having evidence to support their efficacy.

Cuff Width
The amount of pressure required to cease blood flow to a
limb (i.e., AOP) is largely determined by the width of the
cuff being applied to the limb; a wider cuff requiring a lower
pressure (Crenshaw et al., 1988; Loenneke et al., 2012b; Jessee
et al., 2016), essentially due to the greater surface area to which
pressure has been applied. This is an important point as there
are a wide range of cuff widths (3–18 cm) used in the BFR
literature and setting two differently sized cuffs to the same
pressure may produce a completely different degree of limb
BFR (Rossow et al., 2012). It is noted that applying a relative
pressure of 40% AOP does not result in a 40% reduction in blood
flow (Mouser et al., 2017b). Nevertheless, a recent study found
that applying pressure as a % of AOP to three different sized
cuffs produce a similar change in resting blood flow (Mouser
et al., 2017a). This study found that a wider cuff required less
absolute pressure to restrict blood flow at any given % of AOP,
but that a narrow cuff inflated to a higher absolute pressure
(but same % of AOP as wide cuff) had a similar reduction in
blood flow. Although lower pressures can be used with a wider
cuff, this does not necessarily equate to a safer stimulus but
reflects each cuff size’s inherent ability to apply pressure through
layers of tissue within a limb (Crenshaw et al., 1988). Lastly,
we acknowledge that there may be some attenuation of growth
directly under where the cuff is applied (Kacin and Strazar,
2011; Ellefsen et al., 2015), although one study suggests that
this attenuation of growth may be prevented if a % of AOP is
applied (Laurentino et al., 2016). Therefore, it is recommended
that a wide variety of cuff widths can be used if pressure
is set appropriately by using AOP. It should be noted that
the wider the cuff the lower overall pressure will be needed,
however, the use of extremely wide cuffs may limit movement
during exercise.

Cuff Material
Throughout the literature, both elastic and nylon cuffs are
commonly utilized. In the lower body (Loenneke et al., 2013,
2014b), there appears to be little difference in resting arterial
occlusion or repetitions to concentric failure (surrogate for
blood flow) using cuffs of the same width but made of two
different materials (elastic vs. nylon). In the upper body (Buckner
et al., 2017), using cuffs of different material but similar size
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(3 vs.5 cm), there were large differences in resting AOP that
seem unlikely explained by the slight difference in cuff width.
However, when the pressure was made as a % of AOP to each
cuff, the repetitions to volitional failure were similar between
the two different cuff materials. This provides some evidence
that the reduction of blood flow during the exercise was likely
similar between cuff sizes. It appears that any difference in cuff
material could be corrected for by simply applying a pressure
relative to the total AOP specific for each cuff. Although studies
have never directly compared cuff materials over the course
of a training study, there is no available evidence to suggest
that one cuff material would be superior to another. Further,
both elastic and nylon cuffs have been utilized in the literature
and have shown beneficial muscular adaptations (Fahs et al.,
2015; Kim et al., 2017). Considering these collective findings
together, the material of the cuff does not appear to impact the
outcomes of BFR-RE.

Exercise Load, Volume, Rest Periods,
Duration, and Frequency
Exercise Load
The pressure applied during exercise may also be dictated
to some degree by the relative load lifted during resistance
exercise. For the majority of individuals exercising with loads
corresponding to 20–40% of an individual’s maximum strength
level (e.g., 1-RM) will likely maximize muscle growth and
strength (Lixandrao et al., 2015; Counts et al., 2016). When
loads used are at the bottom end of this recommendation
(e.g., ∼20% of 1-RM), a higher pressure (∼80% AOP) may be
required necessary to elicit muscle growth (Lixandrao et al.,
2015), however, further study is warranted to confirm this. The
majority of studies have investigated the elbow flexors and knee
extensors and it is unknown whether different muscle groups
require different pressure recommendations. For example, it has
been suggested that targeting muscle groups proximal to the cuff
may require a higher applied pressure for maximal adaptation
(Dankel et al., 2016). In conclusion, we suggest that exercise
loads between 20 and 40% 1RM be used because this range
of loads has consistently produced muscle adaptations when
combined with BFR.

Volume
In the BFR-RE literature, a common and frequently used set
and repetition scheme exists that involves 75 repetitions across
four sets of exercises, with 30 repetitions in the first set and 15
repetitions in each subsequent set (Yasuda et al., 2006, 2010a,b,
2011a,b, 2012; Madarame et al., 2008; Rossow et al., 2012; Ozaki
et al., 2013; Loenneke et al., 2016; May et al., 2017). It is also
common to complete 3–5 sets to concentric failure during BFR-
RE (Takarada et al., 2002; Cook et al., 2007, 2013; Loenneke
et al., 2012a; Manini et al., 2012; Nielsen et al., 2012; Ogasawara
et al., 2013; Fahs et al., 2015). Furthermore, repetitions to failure
may not be needed in practical settings, such as post-surgery
rehabilitation of clinical populations. For example, doubling this
volume of load lifted does not appear to augment any adaptations
(Loenneke et al., 2011b; Martín-Hernández et al., 2013), although
the dose-response relationship between volume and adaptation

still needs further clarity. Therefore, it is suggested 75 repetitions,
across four sets (30, 15, 15, 15) is sufficient volume to lead
to adaptations in most people. Working to failure is another
possibility to induce adaptations but may not always be required.

Rest Periods
Inter-set rest periods used during BFR-RE are generally short
and typically the restriction is maintained throughout this
period. For example, Loenneke et al. (2012d) conducted a
meta-analysis that demonstrated strength adaptations with both
30 and 60 s inter-set rest periods. Some acute research has
used rest periods as long as 150 s (Loenneke et al., 2010),
but this was not found to increase metabolic stress any more
than LL-RE, and thus may not provide training benefits.
However, rest periods of both 30 s (Yasuda et al., 2010a,
2015b; Loenneke et al., 2011a) and 30–60 s (Madarame et al.,
2010; Patterson and Ferguson, 2010, 2011; Yasuda et al., 2015b;
Loenneke et al., 2016; Ladlow et al., 2018) are common within
the BFR literature, which reflects the recommendations for
achieving skeletal muscle hypertrophy (Kraemer and Ratamess,
2004). On occasions it is not always required to maintain
pressure during rest periods. For example, Yasuda et al. (2013)
demonstrated similar muscle activation with both continuous
and intermittent pressure during rest periods, but only when
a high cuff pressure was applied. Overall we recommend rest
periods should constitute 30–60 s, however, intermittent BFR
may reduce swelling/metabolic stress compared with continuous,
which could limit the stress for adaptation.

Frequency
Traditionally, it is recommended to perform resistance training
2–4 times per week to stimulate skeletal muscle hypertrophy
and strength adaptations (Fleck and Kraemer, 2004; Kraemer
and Ratamess, 2004). Increases in muscle hypertrophy and
strength have been reported with BFR-RE twice weekly (Takarada
et al., 2000b, 2002; Laurentino et al., 2008; Madarame et al.,
2008), with a recent review advocating that 2–3 BFR-RE
sessions per week with progressive overload is sufficient for
enhanced strength and hypertrophy adaptations (Scott et al.,
2015). Some BFR research has implemented training twice daily
(Abe et al., 2005b; Yasuda et al., 2005, 2010b; Nielsen et al.,
2012), which may be used to accelerate recovery in a clinical
rehabilitation setting (Ohta et al., 2003; Ladlow et al., 2018).
In conclusion, high frequency approaches (1–2 times per
day) may be used for short periods of time (1–3 weeks),
however, under periods of normal programming, 2–3 sessions
per week are ideal.

Duration of Training Programmes
Regarding duration of BFR-RE programmes, muscle
hypertrophy and strength adaptations have been observed
in short time frames, such as 1–3 weeks (Abe et al., 2005b,c;
Yasuda et al., 2005; Fujita et al., 2008; Nielsen et al., 2012).
Most studies have examined muscle hypertrophy and
strength adaptations over time frames >3 weeks duration
(Burgomaster et al., 2003; Moore et al., 2004; Abe et al.,
2006; Iida et al., 2011; Nielsen et al., 2012; Yasuda et al.,
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2012; Martín-Hernández et al., 2013; Luebbers et al., 2014;
Kang et al., 2015).

BFR-AE
BFR-AE has been systematically reviewed (including a
meta-analysis) demonstrating the effectiveness of increased
strength and hypertrophy in young (Slysz et al., 2016) and
older populations (Centner et al., 2018a). The application of
BFR-AE usually occurs during either walking (Abe et al., 2006)
or cycling exercise (Abe et al., 2010a; Conceição et al., 2019).
Adaptations for strength and skeletal muscle hypertrophy have
been demonstrated as early as 3 weeks (Abe et al., 2006) but
most effective after at least 6 weeks of training (Slysz et al.,
2016). Skeletal muscle strength has been shown to increase
by 7–27% (Abe et al., 2006, 2010a,b; Ozaki et al., 2011a,b; de
Oliveira et al., 2016; Clarkson et al., 2017a; Conceição et al.,
2019) and hypertrophy by 3–7% (Abe et al., 2006, 2010a,b;
Ozaki et al., 2011a,b; Sakamaki et al., 2011; Conceição et al.,
2019) following BFR-AE. Furthermore, this mode of exercise
also improves functional ability in a range of tasks (Clarkson
et al., 2017a), demonstrating the impact of increased strength
and muscle mass from BFR-AE on activities relevant to daily
living, health and wellbeing. Alongside these changes BFR-AE
can also lead to significant improvements in aerobic capacity
across young (Slysz et al., 2016), old (Abe et al., 2010a), and
even trained individuals (Park et al., 2010) but this is not always
the case. The intensities used during BFR-AE are generally
low in nature (45% heart rate reserve or 40% VO2 max; Abe
et al., 2010a; Clarkson et al., 2017a; Conceição et al., 2019),
and in some cases have not been standardized (Abe et al.,
2006, 2010b; Clarkson et al., 2017a) or have been implemented
with a wide variety of cuff widths and pressures. A smaller
body of literature has examined a variation on BFR-AE,
wherein the BFR is applied immediately after the aerobic
effort. Adaptations reveal an exaggerated improvement in
VO2max, and the potential for greater aerobic adaptations
as a result of an acute upregulation of protein signaling
(Taylor et al., 2016), as has also been shown in highly trained
athletes comparing BFR-AE with matched systemic hypoxia
(Christiansen et al., 2018). Unlike BFR-RE there has been
a lack of standardization of pressure during BFR-AE which
should be a focus in the future to optimize responses and

TABLE 2 | Model of exercise prescription with BFR-AE.

Guidelines

Frequency 2–3 times a week (>3 weeks) or 1–2 times per day
(1–3 weeks)

Intensity <50% VO2 max or HRR

Restriction time 5–20 min per exercise

Type Small and large muscle groups (arms and legs / uni
or bilateral)

Sets Pressure Continuous or intervals 40–80% AOP

Cuff 5 cm (small), 10 or 12 cm (medium), 17 or 18 cm
(large)

Exercise mode Cycling or walking

gain greater understanding of the muscle adaptations to
training with BFR-AE.

Protocols for Prevention of Strength
Loss and Atrophy
In the following section, an overview over the BFR literature
aiming at reducing the loss of skeletal muscle strength and muscle
mass will be provided.

P-BFR
Another strategy for the use of BFR involves applying the
cuffs to limbs without undertaking exercise (i.e., P-BFR).
Although these approaches have not received substantial
research attention, available data indicates that intermittent
application of P-BFR may offset muscle atrophy and strength
loss during periods of bed rest or immobilization (Takarada
et al., 2000b; Kubota et al., 2008, 2011). This could theoretically
provide benefits for patients following orthopedic surgeries
such as anterior cruciate ligament (ACL) reconstruction and
total knee arthroplasty, as less muscle mass and strength
need to be regained in the rehabilitation phase. P-BFR
is a similar technique to that performed during ischemic
preconditioning, namely periods of ischemia followed by
periods of reperfusion. To date this approach has been
used to attenuate the decline in muscle mass and strength
following ACL surgery (Takarada et al., 2000b), during cast
immobilization (Kubota et al., 2008, 2011), and in patients in
intensive care (Barbalho et al., 2018). Furthermore, P-BFR has
been shown to elicit enhanced local skeletal muscle oxidative
capacity and cardiovascular improvements such as increased
endothelial–dependent vasodilation and vascular conductance
(∼14%) in as little as 7 days (Jones et al., 2014; Jeffries et al., 2018).
Similar observations have also been made following intermittent
exposure over 4 weeks (Kimura et al., 2007) and 8 weeks
(Jones et al., 2015).

To date, P-BFR has been implemented following a standard
protocol that was originally developed by Takarada et al. (2000b).
This protocol consists of 5 min of restriction followed by
3 min of reperfusion applied for 3–4 sets. Researchers have
so far implemented this P-BFR once or twice per day and
for a duration of 1–8 weeks (Takarada et al., 2000b; Kubota
et al., 2008, 2011; Jones et al., 2014, 2015; Jeffries et al., 2018).

TABLE 3 | Model of exercise prescription with P-BFR.

Guidelines

Frequency 1–2 times per day (duration of bed
rest/immobilization)

Restriction time 5 min intervals

Type Small and large muscle groups (arms and legs/uni
or bilateral)

Sets 3–5

Cuff 5 (small), 10 or 12 (medium), 17 or 18 (large)

Rest between sets
Pressure

3–5 min Uncertain – higher pressure may be
needed (70–100% AOP)

Restriction form Continuous
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It should be acknowledged though that studies have not yet
investigated other protocols using different durations of BFR
and reperfusion or altering the ratio of time spent with the
cuff inflated vs. deflated. The pressures used during P-BFR have
varied from 50 mmHg (Kubota et al., 2011) to 260 mmHg in
some participants (Takarada et al., 2000b). As it stands, there
is no definitive pressure allocated in the literature investigating
P-BFR, although it does appear that relatively high pressures may
provide the most potent protective effects against disuse atrophy
given the associated complete occlusion to flow (Takarada et al.,
2000b; Kubota et al., 2008). Unlike BFR exercise, the use of
AOP has not been prevalent in this section of the research.
It is likely that the high pressures used in some research can
completely occlude blood flow to and from the limb, but this
is also dependent on other factors such as cuff and limb size
(Loenneke et al., 2012b).

BFR With Electrical Stimulation (BFR-ES)
Recently evidence has emerged for the use of BFR-ES. To date
there is very little evidence in this area. Natsume et al. (2015)
demonstrated increased muscle thickness and strength over a
2 weeks period in untrained male participants following twice
per day BFR-ES. Intensity appears to have a dose-response
relationship with muscular adaptation, with significant strength
gains observed when a maximally tolerable stimulation intensity
is used (Slysz and Burr, 2018), and positive associations between
training intensity and increased in strength (r = 0.8) as
well as cross-sectional area of both fast (r = 0.9) and slow
(r = 0.7) fibers (Natsume et al., 2018). Furthermore, 6 weeks
of unilateral low-intensity BFR-ES increased the CSA of the
extensor carpi radialis longus by 17% more than ES alone in the
contralateral arm of spinal cord injury patients (Gorgey et al.,
2016). Alongside this, these patients also demonstrated improved
vascular function, as evidenced by an increase in flow mediated
dilatation (FMD). While BFR-ES is an interesting new avenue
in this field, more research is needed before evidence-based
recommendations for practitioners can be made.

SAFETY
The following sections will cover the safety aspects that need to
be considered when implementing BFR.

Cardiovascular Response to BFR-RE
During exercise the rise of oxygen demand in the active skeletal
muscles is matched by both central and peripheral vascular
responses. Heart rate (HR) and stroke volume (SV) determine the
total cardiac output (CO) that is distributed by vascular resistance
(Hogan, 2009). Mechanisms regulating blood flow (BF) involve
the central nervous system (i.e., modulation of sympathetic
tone) and peripheral feedback arising from regional (i.e., venules
and arterioles) and local mechanisms (i.e., the capillary beds)
(Murrant and Sarelius, 2015). Local control of vasomotor
tone is dependent upon metabolic, mechanical and endothelial
factors. The integrated responses of increased metabolic stress,
external compression of the arterial wall and shear stress of the
endothelium limit autonomic sympathetic control of vasomotor
tone eventually leading to a balanced level of vasodilation within

active muscle that provides adequate distribution of CO (Saltin
et al., 1998), and these factors are known to be affected by BFR-RE
(Mouser et al., 2017a; Credeur et al., 2010). The uniqueness of
BFR-RE arises from the externally applied pressure compressing
blood vessels and the surrounding soft tissue that could mediate
an altered cardiovascular response. Henceforth, evidences of
the main central and peripheral short- and long-term vascular
adaptations are presented.

Central Vascular Response to BFR-RE
The effect of BFR-RE on the central cardiovascular response is
dependent upon the level of BFR (Rossow et al., 2012), mode
of exercise (i.e., BFR-RE vs. BFR-AE) (Staunton et al., 2015)
and mode of application (i.e., continuous vs. intermittent BFR)
(Brandner et al., 2015; Neto et al., 2016). BFR acutely affects
central hemodynamic parameters when it is combined with RT
(Takano et al., 2005; Rossow et al., 2011, 2012; Fahs et al.,
2012; Vieira et al., 2013; Downs et al., 2014; Brandner et al.,
2015; Staunton et al., 2015; Neto et al., 2016; Poton and Polito,
2016; Libardi et al., 2017; May et al., 2017), AE (Renzi et al.,
2010; Kumagai et al., 2012; Sugawara et al., 2015; Staunton
et al., 2015; May et al., 2017) or even in the absence of exercise
(Iida et al., 2007). Whilst there is an increase in the central
cardiovascular response during exercise, this returns to baseline
acutely (5–10 min) post-exercise cessation.

The studies that have maintained pressure during rest
intervals (continuous BFR) have generally found the externally
applied pressure to increase HR, SbP, diastolic blood pressure
(DbP) or double product (HR × SbP) compared with the same
exercise in free flow conditions (Takano et al., 2005; Renzi et al.,
2010; Kumagai et al., 2012; Vieira et al., 2013; Poton and Polito,
2015; Sugawara et al., 2015; May et al., 2017). Recent works
have reported contrary evidence, potentially due to the fact that
occlusion pressure was set relative to AOP (Neto et al., 2016;
Libardi et al., 2017). Cardiac output seems not to be affected by
BFR during exercise, as BFR groups proportionally increased HR
and decreased SV compared to non-BFR groups (Takano et al.,
2005; Renzi et al., 2010; Sugawara et al., 2015). The removal of
the BFR cuff during rest intervals (intermittent BFR) appear to
mitigate cardiovascular differences between BFR and non-BFR
exercise (Neto et al., 2016). Studies removing the cuff between
sets or between exercises have found no further variations in HR,
(Rossow et al., 2011; Fahs et al., 2012; Downs et al., 2014; Neto
et al., 2016), SbP or DbP (Rossow et al., 2011; Neto et al., 2016),
CO or SV (Rossow et al., 2011; Downs et al., 2014) in the BFR
group compared with the non-BFR group.

Changes in central hemodynamic response are lower
following BFR-RE as compared to HL-RE (Rossow et al., 2011;
Fahs et al., 2012; Downs et al., 2014; Brandner et al., 2015; Poton
and Polito, 2015; Libardi et al., 2017), especially if the BFR
stimulus is combined with AE (May et al., 2017). However, there
is evidence that alterations to the peripheral flow BFR during
light walking augments both peripheral (11%) and aortic (43%)
systolic pressure compared to similar exercise without occlusion.
Interestingly this effect appears to be centrally mediated as BFR
exerts influence only on the outgoing, but not reflected, pressure
waves (Sugawara et al., 2015). Of note, pressure handling
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affects the cardiovascular response to BFR-RE. Higher relative
restrictive pressures induce higher cardiovascular responses to
BFR-RE (Rossow et al., 2012) and may increase the potential risk
associated with BFR-RE. Additionally, if pressure cuffs are not
removed during rest intervals, BFR-RE could maintain blood
pressure elevated as compared to HL-RE (Downs et al., 2014).
On the other hand, BFR-RE results in greater post-exercise
hypotension than HL-RE (Domingos and Polito, 2018).

Peripheral Vascular Response to BFR-RE
BFR exercise has been shown to affect arterial compliance
and endothelial function. Vascular compliance has most
frequently been tested following BFR-RE (Credeur et al., 2010;
Clark et al., 2011; Fahs et al., 2012; Hunt et al., 2012, 2013).
In the short term, Fahs et al. (2012) found four sets of four
different lower limbs exercises to affect both large and small
artery compliance. BFR-RE increased large artery compliance
to the same extent as LL-RE and HL-RE, whereas small artery
compliance was more affected by HL-RE with no differences
between LL-RE and BFR-RE groups. These data suggest a
transient improvement of endothelial function following
BFR-RE. However, this acute response does not seem to preclude
long-term adaptations of vascular reactivity (Clark et al., 2011;
Hunt et al., 2012, 2013) which may in contrast be negatively
affected by chronic low intensity BFR-RE (Credeur et al., 2010).
Other forms of application of the BFR stimulus have received
less attention in the literature. BFR-AE has acutely shown to
impair flow mediated dilatation (FMD) (Renzi et al., 2010),
whilst others have reported BFR-AE to increase FMD in the long
term (Iida et al., 2011).

Systemic vascular resistance (SVR) falls in muscle exercise due
to vasodilation. The threat of the systemic pressure not meeting
new regulatory set-point during exercise is compensated by an
increased CO and sympathetic vasomotor tone. A mismatch
between CO, sympathetic control of vasomotor system and local
mechanisms of active hyperemia could result in hypotensive
syncope (Hogan, 2009). Syncope episodes have not frequently
been reported in BFR-RE literature (Nakajima et al., 2006), but
they seem to be more frequent among practitioners and clinical
settings where the threat is greater in any case (Patterson and
Brandner, 2017). The application of BFR in the absence of any
other stimulus increases SVR with a concomitant decrease of
CO (Iida et al., 2007). SVR has shown to increase or to remain
unchanged following BFR-RE (Takano et al., 2005; Rossow et al.,
2011; Staunton et al., 2015; Libardi et al., 2017) or BFR-AE (Renzi
et al., 2010; Staunton et al., 2015) and to be reduced following
exercise (Fahs et al., 2012). Although the relationship between
CO and SVR does not seem to represent a cardiovascular threat
in BFR exercise, a steady CO coupled with an increased SVR
could drive an increase in blood pressure, and adverse individual
responses may not be discarded.

Venous Thromboembolism
A thrombus is a solid mass of platelets, red blood cells, and
fibrin mesh that typically forms as a response to vessel wall
injury and is part of the normal healing cascade (Furie and
Furie, 2008). Pooling of blood during episodes of stasis, which

can happen during hospitalization or prolonged travel, can
stimulate thrombus formation. A thrombus large enough to
block blood flow, especially if located in the smaller vessels,
can result in local tissue ischemia and subsequent tissue death.
If dislodged it is termed an embolus and can result in a
pulmonary embolism (PE) which can be life-threatening (Heit,
2015). Collectively, deep vein thrombus (DVT) and PE are
termed venous thromboembolism (VTE).

Incidence rates of VTE have been estimated at 10 million
cases annually (Raskob et al., 2014). Western Europe, North
America, Australia and Southern Latin American yield consistent
VTE results ranging from 0.75 to 2.69 per 1000 individuals
per year. The incidence increases with age, 2–7 per 1000 in
individuals >70 years old. The incidence is lower in Chinese and
Korean ethnicity, however, the aging population may factor into
an increasing VTE burden (Raskob et al., 2014). Several VTE
risk factors have been identified and include medical conditions
such as major orthopedic surgery, major general surgery, lower
extremity paralysis due to spinal cord injury, pelvic, hip or
long bone fractures, poly-trauma and cancer (Anderson and
Spencer, 2003; Cionac Florescu et al., 2013). Additional risk
factors include a history of prior VTE, obesity, immobility,
oral contraceptives, family history of VTE, physical inactivity
and genetic conditions that affect blood clotting (Anderson and
Spencer, 2003). Pregnancy carries an elevated risk both in the
perinatal and post-natal periods (Heit et al., 2005). It is much
more common to develop a DVT in the lower extremities
compared to the upper extremities, with approximately 10% of
DVT formations being found in the upper extremities (Kucher,
2011). Finally, the insertion of central catheters during medical
procedures make up the largest risk factor in upper extremities
thrombus formations (Grant et al., 2012).

BFR-RE and Venous Thromboembolism:
Acute Measures
There is an inherent concern in the formation of a DVT due
to the external compression on vasculature via an occlusive cuff
during BFR-RE. Many of the published BFR-RE trials do not
directly measure for VTE formation or use diagnostic imaging.
However, the totality of the literature reveals minimal adverse
events pertaining to VTE and clinically reported events have
not been reported.

Most studies that have assessed for VTE after the application
of BFR-RE have used direct blood markers for coagulation.
Acute studies have not demonstrated a significant increase
in blood coagulations via D-dimer and values, one of the
most utilized clinical tests to rule out the presence of a
DVT, after BFR-RE exercise (Nakajima et al., 2007; Fry et al.,
2010; Madarame et al., 2010; Clark et al., 2011). Madarame
et al. (2013) included prothrombin fragment (PTF) and
thrombin-antithrombin III complex (TAT) testing to assess for
increased thrombin generation immediately after training and
found no significant increase. Additionally, C-reactive protein
(CRP), a protein that has been linked to clot formation, was
also assessed in one study and was not significantly elevated
(Clark et al., 2011). Subjects performing BFR-RE at simulated

Frontiers in Physiology | www.frontiersin.org 7 May 2019 | Volume 10 | Article 533

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00533 May 15, 2019 Time: 11:52 # 8

Patterson et al. BFR Exercise Position Stand

elevation (8,000 ft) and at 6 degrees head down positioning
did not demonstrate a significant rise in D-dimer, fibrin
degradation product (FDP) or plasminogen activator inhibitor
(PAI) (Nakajima et al., 2007). Only one study has assessed
blood coagulation markers in a clinical population (Madarame
et al., 2013). Nine subjects (7 men and 2 women) with a
confirmed history of ischemic heart disease performed bilateral
lower extremity knee extensions at 20% 1-RM with or without
BFR. D-dimer, FDP and CRP were assessed before, immediately
after and again 1 h after both exercise conditions. D-dimer
and CRP was significantly elevated in both BFR-RE and free
flow conditions, however, the values remained within a clinically
normal range. Once adjusted for plasma volume (PV) the changes
in each group’s values were no longer statistically elevated. CRP
demonstrated the same non-clinically significant rise and after
PV adjustment was not significant. FDP was not statistically
elevated in either group.

Most of the acute studies have been performed on healthy
populations [4 healthy (Nakajima et al., 2007; Fry et al., 2010;
Madarame et al., 2010; Clark et al., 2011) vs. 1 clinical (Madarame
et al., 2013)]. Furthermore, sex characteristics have trended
toward male vs. female subjects (38 males and 4 females),
and all have been performed on the lower extremities only
(Nakajima et al., 2007; Fry et al., 2010; Madarame et al., 2010,
2013; Clark et al., 2011). All studies except for one, which
compared BFR-RE at 30% 1RM to an 80% 1RM free flow
control group, utilized LL-RE in both BFR-RE and free flow
conditions (Clark et al., 2011). Standard pressures between
150 and 200 mmHg were used in all studies (Nakajima
et al., 2007; Fry et al., 2010; Madarame et al., 2010, 2013)
except for one study that used a pressure equal to 130% SBP
(Clark et al., 2011). Future acute studies that focus on relative
pressures, the upper extremities, clinical populations and female
subjects are warranted.

BFR-RE and Venous Thromboembolism:
Chronic Measures
Most applications of BFR-RE in the clinical and research settings
are done in a chronic manner over weeks and even months.
Several papers have addressed VTE concerns in a chronic model.
After 4 weeks of bilateral lower extremities exercise at 30%
1RM no changes in D-dimer, fibrinogen or CRP were noted
(Clark et al., 2011). Similarly, 2 days a week for 12 weeks of
BFR-RE at 20–30% 1RM did not significantly increase FDP,
D-dimer or creatine kinase (CK) values in elderly subjects (ages
61–84 years; Yasuda et al., 2015a). The same authors found
after 12 weeks of bilateral elbow extension and elbow flexion
elastic band exercises no significant increase in D-dimer, FDP,
or CK levels (Yasuda et al., 2015b). Chronic BFR-RE after knee
surgery, 12 sessions over an average of 6 weeks, revealed no
signs of thrombus formation as measured by duplex ultrasound
scans (Tennent et al., 2017). A large epidemiologic questionnaire
in Japan of over 12,000 subjects reported the incidence rate
of venous thrombus at 0.055% and PE at 0.008%, of note a
true medical diagnosis for PE was not confirmed (Nakajima
et al., 2006). The value reported for DVT incidence in this

study is lower than the reported in the general population in
Asia (0.2–0.26%) which assumes a very low population risk
(Klatsky et al., 2000).

The total time frame for chronic studies measuring VTE
potential after BFR ranges from 4 to 12 weeks over four studies.
There is much less gender bias in the chronic studies with
a total of 35 men and 37 women tested. One study, utilized
Doppler Ultrasound to personalize cuff pressure to 80% of AOP
in the lower extremities and wide cuffs (11.5 cm; Tennent et al.,
2017). The additional three studies used narrower cuffs on lower
extremities (3–6 cm) and two used standard absolute pressure at
an average of 196± 18 mmHg and the other utilized 130% of SbP
(Clark et al., 2011; Yasuda et al., 2015a,b).

BFR-RE and the Fibrinolytic System
Clotting in the vascular system after injury is part of the normal
healing cascade and short periods of stasis can produce thrombus
formation without adverse events. One mechanism to control
the advancement of thrombus formation is through stimulation
of the fibrinolytic system. Resistance training has demonstrated
the ability to up-regulate the fibrinolytic pathway and has been
demonstrated after just one exercise session and in healthy
young participants and aged patients with coronary artery disease
(CAD) (El-Sayed, 1993; de Jong et al., 2006). It would appear
that BFR-RE stimulates the fibrinolytic system, as application of
lower extremity BFR-RE increased tissue plasminogen activator
(tPA, a thrombus-degrading protein in the epithelial cell) in
healthy participants (Nakajima et al., 2007; Madarame et al.,
2010). Additionally, the application of vascular occlusion without
exercise has demonstrated a significant increase in fibrinolytic
factors (Stegnar and Pentek, 1993; Nakajima et al., 2007).
However, variables such as age, sex, and obesity may alter the
fibronolytic response to exercise (Stegnar and Pentek, 1993).

BFR-RE and at Risk Populations for VTE
Identifiable risk factors for VTE have been established and are
a combination of endogenous characteristics such as obesity
and genetic factors or exogenous triggering factors such as
major surgery or pregnancy (Cushman, 2007). Advancing age
is a non-modifiable risk factor for VTE formation. After the
fourth decade of life, rates of incidence increase rapidly from
1 per 10,000 annually up to 5–6 per 1000 annually by age 80
(Silverstein et al., 1998). Studies addressing blood coagulation
factors after BFR-RE, including D-dimer, FDP and CK, in elderly
subjects have not demonstrated adverse effects. Three studies
have included subjects with age ranges between 61 and 85
years and comprise both lower and upper extremities BFR-
RE training (Fry et al., 2010; Yasuda et al., 2015a,b). One
study has addressed BFR-RE in an aged clinical population
(ischemic heart disease), and did not demonstrate an increase
in blood coagulation factors (Madarame et al., 2013). Other
risk factor group’s coagulation status after BFR-RE has not been
directly studied. However, ongoing BFR-RE clinical trials in at
risk populations (dialysis patients, femur fractures and joint
arthroplasty) are ongoing (Takano et al., 2013; ClinicalTrials.gov,
2016; Clarkson et al., 2017b). Established clinical prediction rules
to assess VTE probability in at risk subjects can be utilized prior
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to the application of BFR-RE to assist clinicians and researchers
in appropriate candidates (Wells et al., 2000).

BFR-RE and Reactive Oxygen Species
Oxidative stress can occur when the generation of reactive
oxygen species (ROS) exceeds the ability of the antioxidant
system to reduce the molecules (Garten et al., 2015). Deflation
of a tourniquet cuff is associated with an increase in ROS and
has been directly associated with ischemic reperfusion injuries
after orthopedic surgery (Cheng et al., 2003). Additionally,
resistance exercise can induce generation of ROS (Reid and
Durham, 2002; Rodriguez et al., 2003; Nikolaidis et al., 2007).
Moderate exposure to ROS is necessary to induce adaptive
antioxidant defense mechanisms, however, chronic or high
levels of exposure have been linked to disease conditions and
signaling the blood coagulation system (Alfadda and Sallam,
2012; He et al., 2016).

Blood markers of oxidative stress include protein carbonyls,
lipid peroxides and blood glutathione as well as antioxidants
systems. The application of BFR-RE (20% 1RM) to bilateral
lower extremities did not significantly raise lipid peroxide
levels (Takarada et al., 2000a). When comparing BFR, in
combination with LL-RE (30% of 1RM) and moderate resistance
exercise (70% 1RM) only the BFR and moderate resistance
groups demonstrated increases of protein carbonyls and blood
glutathione (Goldfarb et al., 2008). Similarly, BFR alone increased
oxidative stress but the addition of low-level exercise to BFR
(30% 1RM) significantly attenuated protein carbonyls and
glutathione status. Furthermore, one exercise bout or 1 week
of high-frequency BFR-RE (1–2 sessions per day/3 weeks;
20–30%-1RM) does not appear to augment oxidative stress or
antioxidant enzyme response (Nielsen et al., 2017a; Centner
et al., 2018b). However, moderate intensity (70% 1RM) exercise
with or without BFR both significantly elevated oxidative
stress (Garten et al., 2015). Thus, overall the addition of BFR
to LL-RE does not appear to increase oxidative stress or
antioxidant defense, thus oxidative stress formation may be
load, rather than BFR-dependent. Further work to understand
the effect of BFR exercise on the oxidative stress responses,
and thus the potential roll for this to act as a stimulus for
adaptation, are required.

Muscle Damage
Traditional HL-RE can induce muscle damage, particularly in
those who are not experienced with exercise (Damas et al., 2016).
This damage can be documented by direct and indirect markers
and is most often associated with the eccentric phase of the
exercise (Nosaka and Newton, 2002). The initial damage response
is thought to occur due to overstretching of the sarcomere,
resulting in z-line streaming as well as eventual disruption
of the cytoskeletal matrix (Proske and Morgan, 2001). Muscle
damage may also lead to activation of stretch-activated calcium
channels or transient receptor potential channels which can
increase intracellular calcium which can lead to destruction of
sarcomeric proteins via calpain activation (Allen et al., 2005;
Yeung et al., 2005). Following the initial damaging bout, there is
often a secondary damage caused by the inflammatory response

(Pizza et al., 2002). Given these effects, damage to the muscle
can be determined directly via muscle biopsy, or it can be
inferred indirectly through quantifying the symptoms thought to
associate with a damaged muscle (Clarkson et al., 1986). These
markers include a decrease in force production, decreased range
of motion, muscle soreness, edema, and by measuring circulating
levels of CK and/or myoglobin.

In extreme cases, exercise can be associated with a
breakdown of striated skeletal muscle tissue, termed exertional
rhabdomyolysis, that can lead to secondary pain, swelling
and potential end organ damage (Tietze and Borchers, 2014).
Cases of exertional rhabdomyolysis are typically associated
with an exercise load that greatly exceeds the fitness and
normal physical exertion of the participant, but have also been
associated with high thermal loads, dehydration, or the use of
certain medications (Zimmerman and Shen, 2013). It has been
suggested that an exaggerated risk of rhabdomyolysis might
occur as a result of BFR training, wherein metabolic stress is
magnified despite the use of low-loads. Indeed, there are isolated
case reports of rhabdomyolysis occurring through the use of
BFR-RE (Iversen and Rstad, 2010; Clark and Manini, 2016;
Tabata et al., 2016), however, analysis of the incidence rate
from the published literature suggests the risk remains very low
(0.07–0.2%) (Thompson et al., 2018). Survey data from Japan,
where Kaatsu training has been practiced by a greater number of
people, suggests a, similarly, low incidence of 0.008% (Nakajima
et al., 2006). Thus, while exertional rhabdomyolysis during BFR
exercise is possible, evidence does not currently suggest that the
risk is inflated compared to traditional exercise.

A common concern of applying BFR with or without exercise
is the possibility that this stimulus may lead to or even augment
muscle damage through ischemic-reperfusion injury. Although
ischemia-reperfusion injury is most commonly associated
with long durations of severe ischemia (Blaisdell, 2002), it
is possible that the combination of short duration BFR with
muscle contraction could elevate the possibility of muscle
damage with this type of exercise. The exercise-induced muscle
damage response to BFR has been investigated in both the upper
and lower body (Loenneke et al., 2014a). Muscle soreness, an
indirect marker of muscle damage, is consistently elevated above
baseline in the days following LL-RE in combination with BFR
(Umbel et al., 2009; Wernbom et al., 2012; Thiebaud et al.,
2013; Wilson et al., 2013; Sieljacks et al., 2016; Nielsen et al.,
2017a). Large decreases in maximal torque production are often
observed immediately post-exercise, however, the majority of
studies suggest that torque returns back to or near baseline in
the following days (Umbel et al., 2009; Wernbom et al., 2012;
Thiebaud et al., 2013; Loenneke et al., 2014a). Muscle edema is
consistently increased immediately post-exercise, but this edema
decreases over time and is often back to baseline by 24–48 h
(Thiebaud et al., 2013; Farup et al., 2015). Further, the few studies
which looked at changes in range of motion found no differences
across time (Thiebaud et al., 2013, 2014). While some studies have
reported prolonged decrements in torque and prolonged edema,
these changes are not usually different from a repetition matched
control without BFR (Umbel et al., 2009; Wernbom et al., 2012)
indicating that these changes are a result of LL-RE,
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not the application of BFR. Although CK and myoglobin are
not often measured in the studies designed to assess the time
course of muscle recovery, the majority of studies do not
find a change in the days following exercise or training (Abe
et al., 2006; Yasuda et al., 2015a; Nielsen et al., 2017a). It is
noteworthy that a recent study did observe a more prolonged
decrement in torque, edema, and increases in blood proteins
(CK and myoglobin) following 5 sets of blood flow restricted
exercise to volitional failure (Sieljacks et al., 2016). In line,
applying a high frequent protocol (1–2 sessions/day) for 2
bouts of 5 consecutive exercise days interspersed by 10 days
of rest recently showed an increase in CK levels during and a
decline in torque production after the first 5 days of exercise
(Bjornsen et al., 2018). Notably, when these protocols were
followed by a second bout of exercise 10–14 days later, there
were minimal changes from baseline suggesting that there may
be a repeated bout effect with this type of training (Sieljacks
et al., 2016; Bjornsen et al., 2018). However, two studies
applying a strenuous high frequent protocol (1–2 sessions/day)
for 10–15 exercise days have shown delayed (12–20 days
post-intervention) muscle mechanical adaptations presumably as
a result of prolonged myocellular stress (Nielsen et al., 2017a;
Bjornsen et al., 2018). To our knowledge, only two studies have
investigated damage directly at the fiber level and report that
although there are signs of stress, there appeared to be no or
only minor damage to the actual muscle (Cumming et al., 2014;
Nielsen et al., 2017a).

In summary, the available evidence suggests that the
application of BFR does not appear to induce a muscle damage
response to LL-RE using single exercise protocols of up to 5 sets
to volitional failure. We recognize that there may be individuals
who are more susceptible to muscle damage than others, however,
this would seem to be driven more by inherent differences in
the individual than the application of BFR. Nevertheless, easing
an individual into the exercise program while documenting
indirect markers of muscle damage may help to better identify
those who may be more susceptible to muscle damage and
help the practitioner to mitigate risk not only to BFR but

exercise in general. To this point, the one study that did note
damage (Sieljacks et al., 2016), observed a robust attenuation
with indirect markers of muscle damage in response to the next
exercise bout. The majority of the studies investigating muscle
damage have applied the same pressure to each individual so it
is presently unknown what impact applying a relative pressure
(e.g., percentage of limb occlusion) may have on this response.
In addition, most studies have been designed to investigate
the time course of muscle damage following a single bout
of low load resistance exercise. Thus, little is known about
how this time course would be impacted by additional bouts
of resistance exercise within the same week, however, current
evidence suggests that 1 or 3 weeks of strenuous high-frequent
(1–2 sessions/week) BFR training does not induce apparent
myocellular damage in recreational active individuals (Nielsen
et al., 2017a). Lastly, although there is evidence that low intensity
aerobic exercise in combination with BFR may be beneficial
for augmenting muscular adaptations over time, it is presently
unknown if there is a damage response to this mode of exercise.

CONCLUSION

The aim of this article was to give an overview of the adaptations
to different modes of BFR, methods of application and the
safety considerations. The authors recommend the use of BFR
combined with different forms of exercise (resisted, aerobic,
passively), considering the volume and intensity, as well as the
amount of cuff pressure, restriction time, size and cuff material.
Tables 1–3 set out the parameters by which practitioners should
use BFR based on up to date and current research in the area.
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