

tear, days postop, or STIM intensity

The Glenohumeral Joint Introduction

- GH joint inherently unstable Large humeral head/ small glenoid fossa
- Multi-axial ball & socket joint Tremendous mobility but
- poor osseous stability
- Dependent on ligamentous capsule & neuromuscular system functional stability

Dynamic Stabilization

KINEMATIC VARIABLES				
		4		
		NH -		
• GH ABD:	93°	96 °	83 °	
• MAX GH ER:	173 °	164 °	154 °	
• GH IR	(7550 °/s	4950 °/s	2314 °/s	
• ELB FLXN	22 °	36 °	35 °	
• ELBOW EXT:	2340 °/s	1760 °/s	1700 °/s	
FLEISIG ET AL, 1996, SHAPIRO & STINE, 1992				

SHOULDER COMPLEX BIOMECHANICS Dynamic Stability

✓ Joint compression

Wilk et al: J Orthop

Spts Phys Ther '97

- muscular co-contraction
- compression of humeral head
- balance of muscular forces
- significant stabilizing effect
 centers humeral head within glenoid

SHOULDER COMPLEX BIOMECHANICS Dynamic Stability

✓ Dynamic ligament tension

- cuff blends with capsule
- muscular contraction -
- capsular tensionreduces tension on capsule
- ER reduces anterior capsule strain

Cain et al: AJSM '87

SHOULDER COMPLEX BIOMECHANICS Dynamic Stability

- <u>Scapula concavity effect</u>
 glenoid fossa humeral alignment
 - concavity stabilizes humerus
 - scapular mobility / stabilityforce couples around scapula
 - Kibler: Br J Spts Med '10 Kibler: AJSM '06 Davies:JOSPT '97

SHOULDER COMPLEX BIOMECHANICS Dynamic Stability

- Muscular Endurance
 Necessary component to normal shoulder function
 - Fatigue-injury
 - Little leaguers- #1 injury cause
 Lyman, Fleisig: Med Sci Spts Ex '99
 - Muscle fatigue desenitizes muscle spindle Carpenter: AJSM '97 Voight: JOSPT '98

 Rehabilitation Program Four Phase Approach

 I. Proprioception and kinesthesia Baseline dynamic stabilization

 II. Dynamic stabilization

 III. Neuromuscular control

 IV. Functional movements & skills sport-specific training

Functional Exercises & Activities

Techniques to Enhance Dynamic Stabilization

- I. Enhance Proprioception & Kinesthesia
 - » Passive/Active joint repositioning sense
 - » Repositioning sense
 - » Awareness of joint position
 - Static positionDynamic position

Techniques to Enhance Dynamic Stabilization

- II. Dynamic Functional Stability
 - » Essential element in rehab » ROM with stability
 - » <u>Necessary step in</u> progression
 - » "Third stage" of rehab

Scapular Stabilization & Control

Techniques to Enhance Dynamic Stabilization

- III. Perturbation training
 - » End range stability » Postural/positional disturbance

 - » Critical rehab goal
 - » Necessary component allowing athletes to return to overhead sports

Swanik, Lephart, Swanik; JSES '02

- Effectiveness of a 6 week plyometric program 24 female swimmers
- Tested proprioception, kinesthesia,strength
- Significant improvements in strength, kinesthesia, proprioception and amortization

Axial Compression Exercises
Progression
Hand on Wall \longrightarrow Hand on Wall/towel Hand on Wall/towel \longrightarrow Hand on Wall/ball Wall \longrightarrow Table \longrightarrow Floor Stationary \longrightarrow Mobility Proximal Resist. \longrightarrow Distal Resistance Stable Surface \longrightarrow Unstable Surface Mid-Range Stabs \longrightarrow End-Range Stabs Continuous Contact \longrightarrow Plyometrics

Wall Table Table Chair/Bench Chair/Bench Floor Stable Surface Unstable Surface Unstable (tilt) Unstable Floor Tilt Board Medicine Ball Movements Movts/Resistance Two Hand Drills One Hand Drills	

Plank Progression

- Bilateral stable surface
- Bilateral unstable
- Bilateral unstable RS
- Bilateral rubber band resist
- Unilateral stability RS
- Unilateral unstable
- Alternating unilateral

Scapular Muscle Training

- Alternating day schedule:
 - » Isotonic table exercises days-Goal: strengthen/hypertrophy

- progress with dumbbells
- neuromuscular drills
- » Manual & light isotonic days-
- Goal: NM control & dynamic stab • Isotonic exercises on physioball
 - NM control drills

Dynamic Stabilization Exercises

- Proprioception & kinesthesia critical
- Train higher levels
- Train bilaterally especially following injury
- · Progress patient through phases of restoring/improving neuromuscular control
- Challenge the system progressive
- Must be functionally specific to the demands of the patient

