

ROTATOR CUFF PATHOLOGY Classification

- ✓ Primary compressive cuff
- Primary tensile overload
- Primary internal impingement
- ✓ Rotator cuff failure / tear
 ✓ Calcific tendonitis
- PASTA lesions
- ✓ PAINT lesions
- Secondary compressive primary hypermobility
- Secondary internal impingement primary hypermobility
- Secondary tensile overload primary hypermobility

ROTATOR CUFF PATHOLOGY Classification Primary compressive cuff Primary tensile overload Primary internal impingement Rotator cuff failure / tear Calcific tendonitis PASTA lesions PAINT lesions Secondary compressive primary hypermobility Secondary internal impingement primary hypermobility Secondary tensile overload primary hypermobility Partial Thickne

-Intermediate T2-signal (No Fluid Signal)

ROTATOR CUFF FAILURE

- Wide spectrum of severity full thickness _____ partial thickness
- 70% of tears occur in sedentary individuals
- Neer: Clin Orthop '83
- Tears occur > 40 yo (50-60)
- Gradual weakening → failure Hawkins: JBJS '87

ROTATOR CUFF Causes of Failure

ROTATOR CUFF VASCULARITY Rathbun, MacNab:JBJS 1966

- RTC vascularity, position dependent
- Shoulder adduction less BF
- Shoulder abduction less BF
- "Winging out of cuff"
- BF & shoulder position

PRP – Platelet-rich Plasma

	t Rich Plasma rview - PRP	
Revie	w Article	
	Sports Med Arthrosc Rev 2	013
	Platelet-rich Plasma (PRP): ns Need to Know	20
Strent P. Amacky, DPA4 Strent P. Amacky, DPA4 Strengt Radia of pinns (PP) has base absorated for happed programmer of non-being to department for a strength of the stren	A ready and prompted prime includes in the data of the prime factors to suggest time bealing in the dirical sating. ³ A ready available source of bioactive molecules is contained in the a granules of circulating patients. ³ 7 Pu- teks contain over 1100 proteins industing growth factors, immune system messengers, enzyme, enzyme lobbilitors, and ether bioactive compounds that are involved in various	

RCT study	Diagnosis	Parameters	Results
Vetrano AJSM, 2013	Patellar tendinopathy	VISA-P, VAS, Blazina	Significant difference in VAS, VISA at 6 months, all parameters at 12 mos (vs. ESWT)
Dragoo AJSM, 2014	Patellar tendinopathy	VISA, VAS, Tenger, Lysholm, SF-12	VISA scores improved significantly @ 12wks but not significant @26wks. Lysholm scores did not improve. (vs. dry needling).
Schepull AJSM, 2011 *	Achilles tendon rupture	Achilles Tendon Total Rupture Score, Heel Raise Index	No difference
de Jonge BJSM, 2011	Achilles tendinopathy	Pain scores, VISA-A	No difference
de Vos JAMA, 2010	Achilles tendinopathy	Pain scores, VISA-A	No difference
Krogh AJSM, 2013	Elbow tendinopathy	PRTEE	No difference @ 3 mos (vs. steroid vs saline)
Creaney BJSM, 2011	Elbow tendinopathy	PRTEE	No difference (vs. autologous blood)
Thanasas AJSM, 2011	Elbow tendinopathy	VAS, Liverpool	Significant difference in VAS @ 6 wks (vs. autologous blood)
Peerbooms AJSM, 2010	Elbow tendinopathy	VAS, DASH	n VAS & DASH
AJSM, 2010 Gosens AJSM, 2011			Significant difference (vs. corticosteroid)

RCT	: Intra	-articu	lar LP-I	PRP inje	ections
Level of evidence	Author	Diagnosis	PRP Formulation	Parameters	Results
Double-blind RCT (n=78)	Patel AJSM, 2013	Bilateral Knee OA (Ahlback radiographic grade)	Single-spin- leukocyte-poor, RBC-poor	WOMAC, VAS	Significant difference (vs. saline)
Double-blind RCT (n=109)	Filardo BMC Musculoskel Disord, 2012	Knee OA (KL grade ≤ 3)	Double spin- leukocyte-rich, RBC-poor	IKDC, EQ-VAS, Tegner, KOOS	No difference (vs. HA)
RCT (n=120)	Cerza AJSM, 2012	Knee OA (KL grade ≤ 3)	Arthrex ACP- leukocyte-poor, RBC-poor	WOMAC	Significant difference (vs. baseline and HA)
Double-blind RCT (n=176)	Sanchez Arthroscopy, 2012	Knee OA (Ahlback radiographic grade)	PRGF- leukocyte- poor, RBC-poor	Knee pain, WOMAC,	Significant difference (vs. HA)
Prospective cohort (n=120)	Spakova Am J Phys Med Rehab, 2012	Knee OA (KL grades 1-3)	Triple spin- leukocyte-poor, RBC-poor	WOMAC, Numeric Rating Scale (pain)	Significant difference (vs. HA)
Prospective cohort (n=144)	Filardo KSSTA, 2012	Knee OA (KL grades 1-3)	PRGF vs. leukocyte-rich double-spin	IKDC, EQ-VAS, Tegner	More pain/swelling with PRP
((())			double spiri	Drage	oo J: 2014

FAST Procedure Overview ✓ **FAST** Procedure ✓ Focused Aspiration Soft Tissue ✓ Precutaneous removal of diseased soft tissue Tenex Health Ultrasound guided, 18 gauge needle technique

Kuhn et al: JSES '13

- Effectiveness of physical therapy in the Rx of atraumatic full thickness rotator cuff tears: a multi center study
- 452 patients evaluated at 6 & 12 weeks & then phone interview at 1 & 2 yrs post
- Assessed ASES score, Western Ontario, single
- ✓ PT successful in 75% of cases
- ✓ 25% patients went on to have surgery if elected to have surgery occurred 6-12 wks

Tempelhof, Rupp, Seil: JSES '99 ✓ Overall incidence 23% (n=411)

51%

"normal" degenerative attrition

✓ 50-59 yr old: 13%

✓ 60-69 yr old: 20%

✓ 70-79 yr old: 31%

√80>:

Rotator Cuff Tears Age Related Prevalence

✓ 20-40 yr old: 0% ✓ 50-59 yr old: 10%

✓ 60-69 yr old: 15%

✓ 70-79 yr old: 26%

✓ 80> : 36%
 ✓ Asymptomatic tears: 65% & symptomatic tears: 34%

✓ More tears in males than females

Biomechanics of the Impingement Syndrome

Tan American Antonio, or Basers Monorces, Vol. 22, No. 8 d 1988 Materican Orthogondo: Society for Sports Moductor		· ZAM
Excursion of the Rotator C Acromion	off Under the	
Patterns of Subacromial Contact*		
Even L. Patron 11 MD, Louis J. Sostein Robert J. Pannuk T MS, Matthew Hepler, T MD, Jo	n Ark,† MD, Van C. Mow,† PhD, and Louis U. Biglien.† MD	" At
From the tOrthopaedic Research Labora Columbia-Presbyterian Medical Center, New Yi Research Laboratories, the Univer-	tory. New York Orthopaedic Hospital, ork, New York, and the §Onthopaedic sity of Michigan, Ann Arbor, Michigan	PY -
Measureme	TABLE 3 ents of anteroposter	rior radiographs
Arm position (deg)	AHI (mm)	Acromion to greater tuberosity (mm)
0	11.1 ± 1.4	33.1 ± 4.9
60	8.1 ± 2.1	11.8 ± 4.7
70	7.5 ± 2.0	9.1 ± 3.4
80	6.8 ± 2.3	6.6 ± 1.9
90	5.7 ± 2.4	5.8 ± 2.4
100	4.9 ± 2.2	7.1 ± 3.1
110	4.7 ± 2.1	9.4 ± 3.6
120	4.8 ± 2.5	11.7 ± 3.7

Decade	Type I (%)	Type II (%)	Type III (%)
21-30	32	37	31
31-40	27	44	29
41-50	37	33	30
51-60	31	52	17
61-70	33	44	23
Total population	32	42	26

Rehab Compressive Cuff Disease

Treatment Philosophy

- Accurate & differential diagnosis
- Identify all causative factors
- Identify all involved structures
- Treatment sequentially & systematically prioritize
- Progressive & functional rehab
- Caution against overaggressive activities early in rehab progress

Rehab Compressive Cuff Pain Acute Episode

- Diminish inflammation & pain
- ✓ Restore or maintain ROM
- ✓ Improve or maintain proper posture
- Emphasize cuff & scapular strengthening
- ✓ Gradual restoration of activities
- ✓ Avoidance of specific activities

Rehab Compressive Cuff Disease Acute Phase - Goals

- ✓Normalize motion
- ✓ Diminish pain inflammation
- ✓ Re-establish baseline dynamic stability
- ✓ Patient education, activity modification
- ✓ Correct postural adaptations

Rehab Compressive Cuff Disease Treatment Formula

• Acute Phase:

- ✓ Postural corrections
- ✓ Activation exercises
- 🗸 Calm inflamed tissue down
- ✓ GH joint stability/mobility "balance"
- Subacute Phase:
 - ✓ Restoring balance (muscle, capsule)
 - Improving strength with proper activation
 - Maintaining posture during activities
- Chronic Phase:
 ✓ Endurance
 - ✓ Maximizing functional activities

McClure, Bialker, Neff et al: PT '04

- Shoulder function in people with shoulder impingement before & after 6 week exercise program
- 59 patients with impingement syndrome
- 39 patients Rx with 6 week program @ 6wks & 6 mos.
- Pain, satisfaction, function, strength, ROM & 3D scapular kinematics were assessed
- Improvement in all areas (ROM, strength, pain & function)
- No difference in scapular kinematics
- "relatively simple exercise program with pt education"

Kuhn: JSES '09

- Effectiveness of exercise in the treatment of rotator cuff impingement
- Systematic review of 11 randomized controlled trials & studies
- ✓ Data demonstrated exercise has statistical & clinically significant effects on pain & improving function but not ROM or strength
- ✓ Manual therapy augmented the effects of
- ✓ No difference b/t home & supervised program

Bang, Deyle: JOSPT '00

- Compared two PT treatment approaches for the treatment of
- shoulder impingement p 50 patients (30 male) with diagnosis of shoulder impingement syndrome were prospective randomized into 2 groups
- Group I: exercise grp: (flexibility & strengthening exercises
- Group II: manual Rx grp:(same program but addition of manual therapy
- Intervention was 6 times over 3 weeks
- Testers were blinded, assessed on strength, ROM, pain (VAS), functional assessment questionnaire
- Results: both groups improved However, manual Rx group stat sign improvement over other group regarding pain and strength

Rehab Compressive Cuff Disease Baseline Dynamic Stability

- Emphasis: posterior rotator cuff & scapular muscles
- Initially, co-contraction (RS) "balance of forces"
- Isometrics if painful -Isotonics if not painful

Rehab Compressive Cuff Disease Baseline Dynamic Stability Initial strengthening program focus on posterior shoulder structures posterior shoulder dominant program ER strengthening scapular muscles retractors depressors protractors (?)

Stackhouse et al: JSES '12

- 17 healthy adults asymptomatic were tested
- Isolated ER force HHD
- Tested pre injection then after painful injection (1.5mL 5% hypertonic saline) into subacromial space
- ✓ After painful injection ER force decreased by 32% and EMG by 23%

Rehab Compressive Cuff Diminish Pain / Inflammation • Pain ≒ Inflammation

- Modalities, ice, heat, ultrasound, iontophoresis (*patch*)
- Biomechanical factors
- Avoidance program
- NSAID's (?)

Supraspinatus Tendonitis Tendonosis

- Similar subjective complaints
- Pain present at rest
- Often associated with biceps tendonosis
- <u>Treatment significantly different</u> then
- paratendonoitis
- Tendon degeneration-- attritional tear
- Tendon failure poor healing response

Laser Therapy How does it work -Benefits

- Light from laser penetrates into tissue, where light energy is converted into chemical energy (First law of Photo Chemistry) (First Iaw of Photo Chemistry) Mitochondrion stimulated to produce more energy (ATP) and repair damaged tissue (Kreb's Cycle / Electron Transport Chain) Production of up to 700% more nitrous oxide for vasodilation of capillaries compared to 0% from placebo or continuous wave lasers
- Decreases / eliminates pain
 Reduces inflammation
- Promotes new blood vessels and tissue growth
 Faster wound healing and
- closure
- Stimulation of osteoblasts

<text><section-header><section-header><text><text><text><text><text><text>

Acoustic Pulse (shockwave)

- Shock waves are singleimpulse with high-amplitude and short-length sound waves from
- a transient pressure disturbance that propagate
- In 3D space, with a sudden rise from ambient pressure to its maximum pressure at the wave front.

Shock Wave Therapy Mechanisms of Action

- MyACT employs the natural mechanisms, by which cells
 "convert" mechanical forces into cellular biochemical events
- Compression exerts a mechanical stress on cells resulting in heightened expression of proangiogenic genes such as eNOS (endothelial nitric oxide synthase), VEGF (Vascular Endothelial Growth Factor), CXCL5, CCL2, CCR2 (Chemokines and receptors), and proangiogenic proteins of VEGF and vWF
- · Promotes increased circulation and pain relief

impingement Compliance

Postural Correction

Borich, Bright, Lorello, et al: JOSPT 36(12) 926-934, 2006

- Scapular angular position assessment at end range internal rotation
- 3- dimensional scapular assessment
- 23 subjects were analyzed
- IR ROM deficit group exhibited significantly greater scapular anterior tilt (9 deg) compared to control group

Lukasiewicz et al: JOSPT '99

- Analyze scapular position and orientation in subject w/ impingement & normals
- 3D electromechanical devices in 3 planes
- During arm elevation: posterior tilting, upward rotation, protraction
- Impingement subjects: greater scapula elevation & <u>less posterior tilting*</u>

Seitz, McClure, Finucane et al: JOSPT '12

- Scapular assistance test
- 42 Subjects: 21 with SAIS & 21 controls
- 3D motion analysis at 0, 45 & 90 deg elevation
- ✓ Increase in posterior tilt at all angles
- ✓ Acromiohumeral distance improved at 45 &90
- "more subacriomal space" ✓ No change in isometric strength

IMPINGEMENT TREATMEN Keys to Treatment - Early Phase Normalize motion Capsular mobility (balance) Establish dynamic stability(ER/IR) Diminish pain &/or inflammation** Postural correction & patient education

IMPINGEMENT TREATMENT Intermediate Phase - Goals

- ✓ Full non-painful ROM capsular
- ✓ Improve strength, endurance
- ✓ Promote dynamic stability
- ✓ Maintain correct posture

IMPINGEMENT TREATMENT Intermediate Phase - Exercises • Continue stretching and flexibility exercises

- Initiate complete shoulder program
- ✓ Deltoid, supraspinatus
- $\checkmark \rm ER$ & scapular muscle training
- ✓ Adjust work levels
- ✓ Emphasize eccentrics
- ✓ Endurance program
- Continue dynamic stabilization drills

Scapular Muscle Training
Train the Scapular Daily✓ Isotonic table days» Heavier weights» Isolated movements» Hypertrophy» Neuromuscular drills✓ Trunk, core, ...✓ Toruk, core, ...

Cools, et al : AJSM '07

- Rehabilitation of scapular muscle balances
- Which exercises to prescribe
- EMG activity, analysis of muscle ratios
- Trapez EMG activity (UT, MT, LT) UT:LT MT:LT
- 4 exercises were best.
 - ✓ Sidelying ER
 - Prone extension
 - ✓ Prone horz abduction ER
 - ✓ Sidelying forward flexion
- ✓ "consider these exercises when selecting scapular muscle ratios..."

DeMey, ... Cools: JOSPT '13

- · 30 asymptomatic overhead athletes with scapular dyskinesis
- EMG analysis: UT/LT, UT/MT ratios
- 4 selected exercises performed with & without scapular
 - correction
- 4 selected exercises:
 - ✓ Prone extension
 - ✓ Sidelying ER
 - Sidelying forward flexion
- ✓ Prone horizontal abd with ER
- ✓ Increased EMG ratios with side lying ER & prone extension
- ✓ No difference with side fwd flexion or prone horz abd

Cools, Witvrouw, et al : AJSM '03

- <u>Scapular muscle recruitment patterns (timing)</u>
- Compared 39 overhead athletes with shoulder pain (impingement) to 30 painfree overhead athletes
- Performed sEMG to scapular & deltoid muscles performed drop arm test
- Significant slower muscle activation in MT,LT in painful grp. compared to control grp. (esp. LT)
- Painful grp. compared to control grp. (esp. E1)
 Painful grp. slower recruitment from deltoid to trapezius

111

Reinold, Macrina, Wilk: J Athl Train '07

- EMG activity of suprspinatus & deltoid muscles during 3 common exercises
- 22 asymptomatic subjects (15 men)
- Fine wire EMG dominant shoulder
- Full can, empty can & prone full can
- Results: no sign diff in supraspinatus EMG Middle Deltoid sign greater during EC & PFC Posterior Deltoid: sign greater PFC & FC

Best exercise for supraspintus – standing full can

MMT - Rotator Cuff Kelly, et al AJSM 1996 • EMG analysis of shoulder

- muscles

 Supraspinatus, infraspinatus,
- subscapularis • Tested 11 subjects, 29 isometric
- Maximize neural activation of
- desired muscle
- Simultaneously minimize activation of synergist
- Optimal Position: "Full Can"

Greenfield, et al JOSPT '95

- Measured head, thoracic spine, scapular resting posture & ROM
- Subjects asymptomatic vs. overuse injury
- Subjects with overuse injuries exhibited <u>forward head posture</u> & greater shoulder elevation
- No significant difference in scapular resting position

Solem - Bertoft: Clin Orthop '93

- Used MRI to determine effect of scapular retraction & protraction on acromial space
- Subjects supine & passively positional
- Protraction position sign reduced acromial angle, or anterior tilting of scapula

Lukasiewicz et al: JOSPT '99

- Analyze scapular position and orientation in subject w/ impingement & normals
- 3D electromechanical devices in 3 planes
- During arm elevation: posterior tilting, upward
- rotation, protraction

 Impingement subjects:
- greater scapula elevation & <u>less posterior tilting*</u>

Warner, Micheli, et al: Clin Orthop '92

- Study scapular positions in 22 asymptomatic shoulders, 22 unstable & 7 impingement
- Analyze positions: arm at rest, elevated to 90^0
- Impingement patients exhibited <u>increased</u> scapular elevation & winging

Kibler, Sciascia, Uhl: AJSM '08

- EMG analysis of specific scapular exercises in <u>"early phase</u>" rehab
 Studied: SA, UT, LT, Ant & Post Deltoid
- Performed: low row, inf glide, lawnmower, & robbery exercises
 Moderate EMG activity across
- all exercises
- SA highest during low row (30%)
- UT & LT were highest during lawnmower & robbery

	Kibler et al: AJSM '08				
		-	TABLE 2		
	Average Amplitude EMG Activity All Subjects (N = 39) by Exercis				
	Inferior Glide	Low Row	Lawnmower	Robbery	
Upper trapezius	8.1 (5.9)	10.4 (8.1)	21.8 (15.7)	11.6 (16.7)	
Lower trapezius	19.4 (26.6)	15.4 (11.6)	30.5 (19.2)	27.0 (20.8)	
Serratus anterior	23.4 (19.6)	28.2 (20.8)	25.5 (21.4)	20.9 (16.8)	
Anterior deltoid	4.6 (2.4)	16.6 (13.3)	5.5 (3.6)	3.4 (5.5)	
Posterior deltoid	8.6 (6.0)	42.4 (23.2)	16.2 (10.6)	14.0 (9.2)	
Differences	SA > UT, AD, PD	PD > UT, LT, AD	UT = LT = SA	UT = LT = SA > AD	
between muscles	LT = all others	PD = SA	LT > AD, PD	UT = LT > PD	
		SA > UT LT	PD > AD		

IMPINGEMENT TREATMENT Scapular Component

- Assess passive & active scapula mobility
 Examine scapular motion (active arm elevation & abduction)
 Analyze in phase of motion
 Analyze in force couples
 Pect minor flexibility / low trapez control
 Protraction / retraction strength
- Protraction / retraction strength <u>restore posterior</u> <u>scapula tilts !!</u> •

IMPINGEMENT TREATMENT Chronic Phase - Goals

- Maintain capsular / muscular flexibility
- ✓ Continue improvement in strength
- ✓ Improve muscular endurance
- Gradual return to sports / activities

IMPINGEMENT TREATMENT Chronic Phase - Exercises

- "Fundamental shoulder exercises"
- Gradual return to sports
- » Interval programs
 » Stretching and
 - strengthening

IMPINGEMNET TREATMENT

- Correct asymmetrical capsular tightness balance the capsule Re-establish muscular balance
- Early avoidance of strenuous activities
- Normalize motion: especially capsular mobility
- Improve ER, scapular muscle strength Dynamic stabilization
- Normalize posture, treat scapular
- control & position

SECONDARY IMPINGEMENT Pathophysiology

- Primary instability or hypermobility
- Humeral head displaces anteriorly and superiorly causing impingement
- Seen in overhead athletes
- Key: differential diagnosis
- Rx: enhance dynamic stabilization

Posterosuperior (Internal) Impingement

Internal Impingement Overhead Athlete

- Occurs *during* abduction & excessive external rotation
- Late cocking during pitching
- Supraspinatus / Infraspinatus rubs on the posterosuperior glenoid rim & labrum

Normal Condition/Adaptation +

Lesion

Is Internal Impingement <u>normal</u> in the overhead thrower???

Internal Impingement Inroduction Rehabilitation Guidelines for Internal Impingement Syndrome • Occurs during abduction & excessive external rotation Image: Construction of the production of the posterosuperior glenoid rim & abrum - inflammation • Results in fraying of cuff and glenoid labrum - inflammation Image: Construction of the posterosuperior glenoid rim & abrum - inflammation • Andrews: Tech Orthop'88 Watch: ISES '91 Jobe et al: JSES '93 Image: Construction of the posterosuperior glenoid rim & abrum - inflammation

TRAUMATIC IMPINGEMENT Pathophysiology

- Fall onto outstretched arm
 Arm is abducted and rotated
- Humeral head forced into acromion
- Tissue injury varies (age, force, etc.)
 - » Labrum, cuff tear, rotator cuff avulsion, &/or fracture

Traumatic Overload Overview

- Forces on tissue exceed tissue strength
- Traumatic fall or during sports
- Accumulative traumas(throwing, etc.. then superimpose a fall or blow to shldr
- Associated lesions; SLAP tears, fractures, capsular injuries (dislocations),neurologic
- Tissue quality,age, extent of force determines pathology & degree of injury

What's his lesion/problem ???

Calcific Tendinitis

- Unknown etiology Reactive calcification followed by spontaneous absorption Usually occurs in supraspinatus &/or infraspinatus tendon (vascularity issues)
- Overall incidence 3-20%
- Phases to calification acute inflammation, calcification, absorption Treatment concepts Rehab, barbotage

'Kevin, may I be excused? My brain is full."

IMPINGEMENT Summary

- Numerous types of impingement
 subacromial (compressive)
 internal (posterosuperior)
 traumatic (overload)
- $\begin{array}{c} factors \ (osseous \longleftrightarrow soft \ tissue) \\ \ Humeral \ head \ forced \ into \ acromion \\ \ Rehabilitation \ base \ on \ causative \end{array}$

